自治系统周期解的数值方法,因为在物理、化学、生物、电子学和工程技术等问题中经常可以遇到周期震荡现象,并且这种现象在自然界同样普遍存在着。
而在数学中求解微分方程是周期解是一个古老且有困难的问题,早在一九零五年时,戴维希尔伯特第16问题就是有关于微分方程周期解存在性的判定问题。
然而至今依然没有什么进展,并不是在过去半个多世纪来没有数学家去拆解,而是难度之大远超想象。
特别是在六十年代之后,计算机的普及和计算机技术的发展,大家的研究思路和方法已经发生改变,在实际问题的研究中,比如生物化学中的布鲁塞尔振子,大家的兴趣并不在于周期解存在性的理论证明,更多是关心周期解的位置、形状及周期的大小。
所以王多鱼编写的关于计算方法的研究就显得尤为重要了。
(本章完)